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Improvement of the Spheroidal Method for
Artificial Satellites

John P, vinti

Experimental Astronomy Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

Objections to applying the spheroidal method to calculate a
polar orbit of an artificial satellite are easily overcome,

Previous papers have already treated the behavior in an exactly
polar orbit of the right ascension ¢, the coordinate for which
the difficulty supposedly occurs. Just as in the Keplerian prob-
lem, it remains constant, except for jumps of 180° at a pole.

There remains the case of an almost polar orbit, for which
the calculation of 4 may be inaccurate near a pole, unless one
takes special precautions. The present paper first simplifies
the expression for ¢ for all orbits, polar or not, and then shows
how to avoid the difficulty altogether, by solving directly for
rectangular coordinates and velocities. These considerations
apply both to papers by the author and by Izsak on the original
spheroidal method and to the author‘s later papers incorporating
the third zonal harmonic into the spheroidal potential,

The present paper simplifies orbital calculations by the
spheroidal method for satellite orbits with all inclinations. Its
main points are the bypassing of the right ascension and the
avoidance of differences of almost equal guantities, so that all
calculations become well-conditioned.
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1., INTRODUCTION

Objections have sometimes been made to applying the author's
spheroidal method to calculate a polar orbit of an artificial
satellite. The coordinates that appear are p, for which the level
surfaces are oblate spheroids, m, for which they are hyperboloids
of one sheet, and the right ascension 4. The apparent difficulty
in a polar orbit arises only in 4 and then only at a pole.

For an exactly polar orbit I have already shown by limiting
processes in V196la and V1961b(1) that the spheroidal potential
leads to g = constant, except at a pole, where it jumps by + 180°,
accordingly as we call the orbit direct or retrograde, respectively.
This is the expected behavior, just the same as for a Keplerian
orbit, so that no real difficulty appears. It holds whether or
not the model takes into account the third zonal harmonic, with
coefficient Jg.

Although the difficulty was easily disposed of, without
tedious numerical calculations, for an exactly polar orbit, one
might still claim that it remains troublesome for an almost
polar orbit, For such an orbit the calculation of ¢ involves
a small denominator which almost vanishes at a pole. One then
may very likely lose accuracy in passing by the pole or have to
use special procedures which will increase computer time and
storage demands and which will not elsewhere be necessary, The
present paper shows how to avoid such difficulties.

2. THE AUTHOR'S SPHEROIDAL SOLUTION; WITHOUT J3

The notation in this section is that of V196la, corrections
of which are to be found in Walden and Watson 1967, p. 16. The
rectangular coordinates X, Y, Z satisfy

2 2 1/2 2 1/2
X +iY = (p“+c) (1-0%) exp id (1.1)
Z = pn (L.2)
Now by (8.50) of v196la,
g=0 +F, (2)

1. The initial V refers to the author'’'s own papers.
-1-



where F is that part of the expression which varies rapidly near
a pole. Here Q' is given by Eg. (9) of the present paper and

F = KX (3.1)
K = |K| sgn ay (3.2)
where
-1
2 _ 2 2 2 2 2,-1 2 2_ 2.2
K" = a3 Mg My (a2 Oy ) (no +n, 1—no n, ) (4)
But 1
2 2 2 2
Mg +My = 1+ay"(-2a c7) (4.1 of V 1961a)
-1
2 2 2 2 2
N Ny = (ay '-ay7) (-2q,¢%) (4.2 of Vv 1961la)
It follows that K2 = 1, so that
K = sgn a; = +1 (5)

for direct of retrograde orbits, respectively, in order that the
right ascension g may correspondingly either increase or always
decrease. Then

g =0" + X sgn ag (6)

is an exact equétion for all orbits, with the spheroidal model.
This is in contradistinction to the results of V196la, where it
was only shown to hold for polar orbits. Thus the present work
simplifies all calculations with the spheroidal model.

To find the rectangular coordinates X and Y directly, without
first calculating g, insert (6) into (1.1), use

1

5 2 —5

exp ix = (l—nO sin2 W) (cos ¥ + iA/l—'ﬂO2 sin V) (7)

from the last paragraph of V1961b, and then put n=nosin ¥ and

(1—n02)1/2 =| cos 1|, from (6.4) and (4.7) of V196la. The

2,1/2

troublesome denominator (1-m7) then cancels out, with the

result



N

X+iY = (92+c2) (cosl +i cos I sin U)exp i0* (8)

for all orbits, direct or retrograde. Here

1
“ 0' = Bo+a, (a,°- 2)2 (B.U+ 3= n.°n"% i
3+ {0y -0y Mo (B3¥+ 33 Mg My sin 2¥)
“ 2 -1/2 4 .
-C a3(-2a1) (A3v+ T 3k51nkv) (9)
k=1
Separately
1
2 2.2
X=(p“"+c”) (cos Q' cos ¥-sin O' cos I sin ) (10.1)
1
2 2.2 .
Y=(p"+c”) (sin Q' cos ¥ + cos Q' cos I sin V) (10.2)

These expression contain no singularities or rapidly varying

quantities, so that there is thus never any difficulty with a polar

or almost polar orbit, For a strictly polar orbit cos I and q
- both vanish, so that Q'=B3 and

2 2 1/2
X+iY = (o +c7) cos | exp iB3 (11)

3

3. Izsak's Spheroidal Solution

Although Izsak (1960, 1963) suggested using a slowly rotating
reference plane to avoid the polar difficulty, actually the same
transformations hold for his solution of the spheroidal problem.
For the sake of accessibility, I shall refer to his 1963 paper.

In making the comparison, note that my symbols are to be changed
. as follows: & - a, N =2 0O, no 2 s, and 53 + (l,; others remain the
same. Then, with use of Izsak's Egs. (3), (91), (37), and (63),
one finds again the equivalent of the present Egs., (10) for the
rectangular coordinates X and Y. Note that Izsak's expression for
0* contains (1—52)1/2 in the numerator and l—e2 in the denominator
of eaéh term except 0O,. The l-—e2 in such a denominator does not
necessarily produce a singularity as e-» 1, since each (1—ez)—l
is multiplied by v=c/a and p = a(l—e2) is a quantity analogous
to the semi-latus rectum in a Keplerian orbit. In such an orbit

-3-



p > 0 for any orbit that does not intersect the center of the |

planet, even if e=1. 1Incidentally, the same powers of p occur in

coefficients B3, A3 and the A3k's.

4, Isclation of the Right Ascension

In either solution, the quantity here called ¥ is the sensi-
tive part of the expression for the right ascension 4. If one
actually wants values of &4 near a pole in an almost polar orbit,
it is better to rewrite Eq. (7) as

N

exp ix = (coszw+coszl sin2¢) {(cosi +i!cos Ilsin ¥)
(12)
One thus avoids calculating the difference of two almost equal

numbers in the denominator. Then ¢ is given by (6) and (12).

5. Velocity Components, with J,=0

3

On taking the logarithmic derivative of (8) and multiplying
the result by X+i¥, we find

N

/ \
¢ LS 5 . 1 . . . » 'Qi
X4+iY = °2° 5 + 10'}(X+1Y)+(02+c2) (-siny +i cos I cos w)wel ’

p +c
(13)

/!
so that 1
. . . 2
X = "%E_E*'X‘YQ'+(02+CZ)
0 +cC

(~sin ¥ cos C'-cos I cos § sin Q')&
(14.1)

1
. 2
o o

Y = > Y+xQ '+ (0°4c?) (-sin ¥ sin Q' + cos I cos ¥ cos 0')§ (14.2)

P +c

Differentiation of (1.2) gives

.

Z = mp+on = n5+noo cos ¥ U (15)

These equations contain neither small denominators nor differences

of almost equal guantities., Here



1 1
. 2 2 -1
p= ae(§—> (02+A0+B) (oz+c2n2) sin E (16)
0
from p. 6 of Bonavito 1962, and
1 1
. . 2 22 2 2.2 2 221
n = ﬂocos¢ b= (az -ag ) (L-g“sin"V¥) (p"+c¢™n") “cos t, (17)

from p. 15 of walden 1967, after a few transformations. Here
q=‘l’]0/ﬂ2 . Then

1 1
. — 2 —l 2
Vo= gt (ay-ay?) (0%4c?n?) T (1-aPsiny) (18)
Finally, by Eqg. (2) of the present paper,
-1
: 2 2 3 . 2 -4 :
1 — on—— i
Q'= a3(a2 Oy ) ﬂO(B3+ 16 Mo My cos 20) 9
1
2 2 4 .
~cTaz(-204) (A3+k§1kA3kC°s kv)v (19)
Thus we also need v. With
-1
p = (1+e cos v) “p, (20)

from (5.12) of V196la, where p=a(l-e’), we find

0 = g 02 sin v v (21)

Comparison of (16) and (21), with use of the anomaly connection

1
2 2
sin E = g (L-e”) sin v (22)
then gives
1 1
2,12, 2 2
c_a | p(l-e”) (P +Ap+B)
V=5 a 2 2 (23)
0 P +c n2

Egqs. (14),(15),(16),(18),(19), and (23) then give the complete
-5-



algorithm for finding the velocity components in the sphercidal

model, when J3 is not included.

6, The Author's Spheroidal Solution, with J

3

The notation in this section is that of V1966, corrections of
which are to be found in Walden and Watson 1967, pp. 19, 20, 22,
27, and 31. with this solution

g = (i'+G sgn O34 (24)

where ' is given in Eg. (41.4) of the present paper and where
G is given by Eg. (150) of V1966, viz

1 1
= | -1.2,. 2 _
¢ = laglay u®(1-8) “[(hy+h,) ¥y+(hy=h,)¥,] (25)
From Eq. (158) of V1966, we have 1 1
_l E 2 2_ ‘2_
- = - - - [ t
(hl+h2)xo+(hl h,)xy=2 “(1 c,) [ c,)"-c; ] (E,"'+E, ) (26)

If u 1is a solution of the cubic equation (27) of v1966, then by
(32,1) and (32.2) of that paper

2
=S u - -1,,_ -1,5.
C2 = a Py (16), C1—2u6po (1 CZS) (1 Cz), (27)
so that
2 2
(l':z) -C ll_ls 1 _ _9_.2._ (1-8)-R | , (28.1)
—C2 u agPg
where
2 "2 2 2
1 c 26 1 c
Rsl—~ - S =1 (1-8)( = - ) (28.2)
v 3P (Po> v 3Po
By {27) of V1966, however,
1 c2 ‘
R==-1 - (1-8) (29)
u agP,

Insertion of (29) into (28) then shows that

-6-



(1-c,) M (1-c,)%-¢)’] = (1-s) H(u-s) (30)
which, with (26), gives 1 1
_ T2 2

(hy+h,)Xo* (hy-h,y) %, = 277 (u=8) (1-5) (E,'+E,") (31)

Now, by Egs. (21.2), (18), and (26) of V1966, for all orbits,
direct or retrograde,

1 1

2 ,
!a3‘a51u = (u—S)2 (32)

Then, from (25), (31), and (32),

1 t4E_
G =735 (E,'+E5") (33)

for all orbits, polar or not, and direct or retrograde. This
is the same as the expression given in Egs.(159) of V1966 for the
~ sensitive part of g in the case of a polar orbit. Here, however,
we have shown that it holds for all orbits.

To evaluate G, place E,'= Ez'(w+v/2) and E3'=E3'(W— gj into
Egs.(104) of v1966. The results are

e2~sin ] e3+sin ¥
b o e ———— | J—
cos Ey' = l—ezsin I cos Ej' = 1 +e3sin b
(34)
1 1
2 2
(l-e22) cos * (1—e32) cos %
: [ J— 1 | PO,
sin E," = l-e, sin V¥ sin E, l+e3sin ¥ '
where
e,=(1-P) Ta, e,=(1+2) Yo, o%=p%4s, (35)
with 0 £ ey : ezi 1, by Egs. (100) and (47) of v1966. Then, by
(33), |
cos(E2’+E3') = cos 2G = 2 cos®G-1 (36)

From (34) and (36) it then follows that



1

l -
- E — P P 2
2 l+e2e3 + ,/(l—e2 )(1—e3 )) cos ¥
cos G = k(W) 1 ' (37)
((l—ezsin w)(l+e3sin \lf)]2

where k(W)=4+1,

We now show that k{(¥)=1 for all ¥, First ncote that E2'(y)
is related to y in the same way that an eccentric anomaly is re-
lated to a true anomaly. The same holds for E3‘(y). Thus each
increases as y increases, by Eg. (160) of Vv1966, so that G52'lx
[Ez'(¢+ﬁ/2)+E3'(w—ﬂ/2)] is a continuous monotonically increasing
function of V.,

Also, from the definitions, E2'(y) and E3'(y) are both equal

to nm for y = nmn., Thus
G =y for ¥ =(n+ l)ﬂ, (n=0,1,2...) (38)

so that cos ¥ and cos G both wvanish for V={(n+ —)ﬂ Now consider
a small interval (n+ —)ﬂ € <V < (n+ —)ﬂ + €, Since G always
increases with increase in W, the correspondlng changes A cos V¥
and A cos G are both negative if n is even and both positive if n
is odd. Thus k(V) > 0 over any such inteval. But k(V) = +1 for
all V¥ and since cos G and thus k(V) are continuous functions of ¥V,
it follows that

k(y) = 1 for all W (39)

Before we rewrite (37) with omission of k(V¥), let us first
simplify it. To do so, note that by (35) and by (48) of V1966,
which is

n =P + Q sin ¥, (40)

we obtain

(1-e,sin ¥) (1+eysin ¥) = (l—Pz)_l(l-ﬂz) (41)
Now from Eq. (32.3) of V1966

2P = r(1-8)+, ' (42.1)



where
r

b =52 a5t o, (42.2)

-1

r 2(1—c25) u/p (42,3)

(o]

Thus 6 = O(JZ) and r = 0(1). Egs. (35) and (42) then show that

-1 5

ltejey + /(1-e,%) (1-e,®) = (1-p%) ~(L+s+(1-5),/1-r%6% )  (43)

on inserting (39), (41), and (43) into (37), we find

1
2

N

1
- = 5 —
cos G = 2 2(1—n ) [1+S+(1—s),\/l-r262 ] cos ¥ (44)

We also need sin G in calculating rectangular coordinates.,
To evaluate it unambiguously first note that

. . o~ : & '
2 sin G cos G = sin (E,'+E3') (45)

=(l—n2)—l(l~P2)[(e3/i—e2 zji —e, )+( —e +/~;e ysiny]cosy
(46)

by (24) and (31). Then from (35), (42), (44), (45), ana (46) it
follows that

-1 1
cin @ = 2 2(1-5)% {QW/I=xp ~/Tixb)+[ (1+P)/I-r8 +(1-P)/T+rblsin}
- 1 1
(1-n%)? [1+s+(1-sWi-rZs® ]2 (47)

To check this, note that for J, = O we have 6§ =0, P =0, Q =S

3 (]
and S = sin21, so that (47) then reduces to
1
. 2, 2 .
sin ¢ = (1-n°) “|cos I|sin ¥, (48)

agreeing with (7) for sin Y.
If one really wants values of the right ascension near a pole,

one can use (24), (44), and (47).

-9



It i1s then advisable, however, to rewrite the l—nz in the denomi-
nator by using (35) and (40). One finds

2 2
1-n7 = cos w—(P2+2PQ sin ﬁ)+(l-S—P2)sin2W, (49)

resulting in the same kind of simplification near a pole as does
(12).

Near a pole in a nearly polar orbit the term —(P2+2PQ siny)
in (49) is much smaller than the positive term (l—S—Pz)sinzw, To
verify this statement, note that in a nearly polar orbit, Sz1, Qal,
P<<l, and near a pole |sin ¢|x 1. Then from (32.,3) of V1966

2

— . . -1 _é _ ~ __l_ -
P=(1 — Su) 5 u(l-s) 6200 (1-8), (49.1)
0o o)
so that
2 , . 1
|P® + 2P0 sin | = 5500 (1-S) (49.2)
and
(1-S-P2)sin’# % 1-§ (49.3)

Thus Eg. (49) gives no trouble near a pole.
In rectangular coordinates we find from (1), (24), (44), and
(47)

1
2 2.2 -1 e
X = (0°+¢”) [H,cos (' cos ¥ -H, V1-S sgna,sinQ' (H.+H.sin{)]
1 1 3 2 73
(50.1)
i
Y = (pz+c2)2[a sin ' cos ¥ +H.-/T<s sgna.,cosC' (H,+H,siny) ]
1 1 3 2 73
(50.2)
and
Z = en-6 , (50.3)
from (1.2) of V1966, Here
-1 - 1
Hy = 2 (1 + s + (1-s) J1-r%s? 1° (51.1)
H, = %’Q( Jl1-r& - /1-rd ) (51.2)
Hy = %{(1+p) /T=r6 + (1-P)/T + £ | (51.3)

-10-



and

Qr=p,~c2a, (-2 ;%(A .7 in k
' =fy Qg o 3V k¥1A3k51n v)
1
-1.2 3 2.2 .
+05 0,0 (B3W~ 2 C1C,Q cos ¥+ _3¢,70%sin 2¥),

32

(51.4)

from Eg. (150) of V1966. Like Egs.(10) these equations contain no
singularities, even for a polar orbit. Moreover they hold for all

oribts.

For an exactly polar orbit we have S=1, P=0, Q=1, a3=0,

O'=B3. The X and Y equations then become

1
X + iy = (02+c2)2cos Vv exp iBB’

as for the case J3=0 of Egq. (11). The Z equation, however,

and

is

(52)

Z = pn-&, where & =(re/2)J£llJ3|, so that the orbit is still changed

by the J3.

7. Velocity Components, with J3 Accounted for

From Egs. (50.1) and (50.2)
1 1

.y 2 2
X+iY=(02+cz) [H1COSw+iHIl(1—S) sgna3(H2+H3sin¢)]exp iq

Logarithmic differentiation of (53), with multiplication of the

result by X+iY, gives

(53)

(54)

1 1
C+iY PP iq 1Y)+ ( 2+ 2)2[—H sinw+iH_1(l—S)zsgna H cOsW]@expiQ'
X+1¥=( 5 2-+1Q Y (X+iY)+ (07 +C 1 1 3H4
p +c s
so that
1 1

p +C

-11=

X= 53 X—Yé'+(02+c2)2[—Hlsianos ﬁ'—HIl(l—s)zsgna3H3coswsinO']W

(54.1)



. 1 1

Y= -200 Y+Xﬁ'+(p2+c2)2[—HlsinWSinQ'+HIl(l—S)zsgna3H3cosvcosﬂ']@
0 +c (54.2)
Also
Z = mp + pm (54.3)

by (15). Egs. {(16) and (23) still hold, so that the equations for
o and v are as for J3=0.
For (' we find from (51.4)
- 2 - % 4
Q'=-c"a (—201) (A,+ T kA
3 3 k=1

3kcoskv)v

1

-1 2 3 -
+q3a2 u (B3+ 4C1C2Q51nw+ 16

2

C22Q cos 2¥) ¥ (55)

The new expression for it is still lacking. From p, 14 of

Bonavito 1966, we find

o 1
n=Q cost { = (l+CyM-C,m~) cos V , (56)
2 2 2 u 1 2
p +Cc M
so that
1 1
. Mp 2 (1+Cym-CyM )2
b = 0 2 (57)
u 2 2 2
c +Cc N
Here
2 2
24
" —~) (1-s) (1- acp s)
1 c Pg oPo 4
o=t g5 (-8 5 + 0(J,7), (58)
0*0 [1+ 5= (1-25)]
oPo
2 _ 2.2 _ 2 _1_ 2 2-2
¢ =y "b =rg dy T gr. I3, (59)



The equations of this section reduce to those of Section 5, if J3

is equated to zero.

8. The Improved Algorithm for the Spheroidal Model, with J

3
Begin with Section 12 of V1966 and follow it through the

third line on p.45, viz, N = P+Q sin . 1Instead of then calcu-
lating Ez' and E3', however, replace that calculation with Egs.
(42), (50),and (51) of the present paper. This changed pro-
cedure not only simplifies the calculation of X, ¥, and 2z for
near-polar orbits but bypasses the right ascension in all cases,
To calculate the velocities i, &, and é, use Egs. (54) through
(59) of the present paper.
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S Appendix I
FACEDING PAGE BLANK NOT EILMED,
Algorithm for Satellite Position Vector, and Velocity,
if the Potential V = -uo(p2+c?n2)™YJ; = 0)

Given

M, £y, Jy, A, €, I, Bl. 62. 63

Compute once for each orbit:

2 2 . 2 2 2, 2 2 2, 2
Co =T o Ng=sinI, p=a(l-e”), D=(ap—c0 )(ap—c0 Mo )+4a cy Mg
_ 2 2, 2 L 2 -1, . 2 2.2 2_ 2 -1 ¢
'=D+4 a o (1 o ), A= 2ac0 D (1 Mg ) (ap o "o ) <0, B=cO Mo DD
1
_ _ 1 nl - > . 2 -1 . -1 -1 -1
bl- 2A>0, bZ—B . ao--a+b1 a, py= ~¢4 a, (1 o )+aa0 pD "D
1 2. 2 2
c(up )2, au=af1- °0 "o | . o1, mo2a 20 b
A=HP, ) . G3=0 a,pq * 2 7 apD' ’ I="Ng"M2
2 1
c ——
0 2,2
' = o, (1+ cos 1)
) 2 agPg
. n -1
Also, with Rn(x) = X Pn(x ),
compute
1
2,2 2 (b0 By [ (102 %]
A,=(l-e”) pT | —] P (——- R__,l(1l-e7)
1 n=2\P / n b2 n-2
L, 1
2,2 -1 n 2,2
A,=(1-e%)"p n_7:()(1:>2/5>) Pn(bl/bz)Rn[ (1-e“)“], where

i , .
i-n 2i-2n
Dy, = 2 (-1) (cy/P)

(b,/p) PP, (b) /D))
n=0

-15-



i i-n 2i-2n 2n+l
D2i+l=nio(—l) (Co/p) (bz/ ) n+l(bl/b2)
T, 1

4 2,2 -3 2.2

A,=(1-e")%p " 7 DmRm+2[(l e”) ]
m=0

_ -1 -2 _ _ 1 3 2 15 4 175 6

B, = 2n ~q “[K(q)-E(q)]= >t 16 9128 2T 3048 I teeeees

207 K (q) = 1+ %q2+ 9 g4 22 o6

By = 64 9 * 256 9 *e.v
. -1
ag' = ap* A1“’0 o 22B1B)
2n
m-1 {(2n)!r
2m
Yo = i2ml“'“"' > n. .2
(m!)° n=1 27 (n!)
-1 ~
-2.2 -2m
By =1-(1-my") T, "n"2
1 1
3 . 2.2 -3_ 2 4 _ 3 -3, 22 42
All = (1-e7)p “ef 2b1b2 p+b2 ) Alz— 32 P (1-e7) b2 e
L 2
2,2 -1 -1 2.2 -2 9 e“, -3 3. 4 2. -4
Ay =(1-e)"p elbp "+ (3b; -0, )p 2 blbz (1+57)p ~+ § b, (4+3e7)p ]
L 2
2.2 -1.e“ 2.2, -2_9.72 2 -3, 3 . 4,..2 4 -4
A,,=(1l-e )p [8 (3b; “-b, )p ae b,b,"p T+ 33 b, " (6e"+e )p ]
1 3 1
2.2-1 e -3 -5, 4.4
23”(1 e ) p 8 ( -b b2 p +b P ): — 256 (l e ) p bz
1
2.2 -3 -1 3 2 2
Byy=(1-e%)"p “el2+byp " (3+ 7= )P 2(dp,%4c,°) (4+3e9)]
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= 2 4
(1..2,2 —3re” -1 2 e 32,1 2 2
By,=(1-e%)"p “[F7 + gbip TeT-p T(gm + 327) (5by +cy )]
1 1
—(1-e2y2=3 3; 1. =11-21 2 2 1, 2.2
Ayy=(1-e%) D [12b1p -3P ~ (5b, +cg )1, Ay 35(1-e%)p
1
1) p\2 .1 -1 -1
2nvl—a6 (ao) , 2nv2-a- a2'A252 , e'=a. ae < e
a2, -1 2. -1 _ -1 -1
M=By7Cq Paay Mg BBy, My=By+Bya,7 (ag+A) ) A,
1
A, = —B—za 'a. 81 A -a_l(A+c2 2115,1313"1)
3= (ao 2 f272 ¢ 4= 3 17 "o f2”1%2
1 _1
x_cz_g)z Y RTA R W e NS
5 = % \a, G2 Mg ¢ 6~ \a, Ay B2 v 758985
For each point at time t, now compute
1) Ms=2ﬂv1(t+kl) ms = 2UV2(t+X2)
2) sSolve for EO: MS+E0—e'51n(MS+EO)=Ms
3) To find vyt Place E=MS+Eo in the anomaly connections
-1 . -1 2,2 .
cos v = (l-e cos E) ~(cos E-e), sin v = (l-e cos E) ~(1-e")"sin E
and solve for v = Ms+vO
4) \v0=)\.3vo
- - 1 .
5) Compute M, = X4v0+ 2 x551n(2ws+2w0)

-17-
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T -1 _ 1 3 -3, 2
6) Then El—[l e cos(Ms+EO)] Ml ze'[l e'cos(MS+EO)] Ml 51n(MS+EO)

7) Place E=MS+EO+E in the anomaly connections and solve for

1l
v=MS+VO+vl
2

8) Then wl=l6[A2vl+kilA2k51n(kMS+kvO)]+x751n(2ms+2¢0)
9) Compute

1 2 1 2

. 23 i - = F Y- 9o

M2 ag [Alvl+k=lAlk51n(kMS+kvO)+X5{Blwl 5 wlcos(2W5+2¢O) 3 51n(2ws+2wo)

4
+ —2-4— sin(4¢é+4wo)}]

-1
10) Then Ez—[l-e'cos(Ms+Eo+El)] M2

11) Place E=MS+EO+E1+E2 in the anomaly connections to find v=Ms+vO+vl+v2.
[ " E— f
12) Then WZ—K6LA2VZ+A21vlcos(MS+VO)+2A22v1cos(2Ms+2v0)
+A2351n(3Ms+3v0)+A2451n(4Ms+4v0)]+2X7[wlcos(2w8+2¢0)
3q° 3¢°
, ! ' - ] ]
+ 73 51n(2ds+2¢0) e 51n(4us+4w0)]
Then
E=MS+EO+E1+E2, v=MS+vO+vl+v2, w:ws+¢o+wl+w2
13) o=a(l-e cos E)=(l+e cos v)—lp, n=ngysin ¥
-1
-1 3 2 -4 2 U 2 4
[, L} —— 1 \‘ — —_— &) i
14) G ~55+a3a2 (B3¢+ 32 "o M2 sin2¥)-c 0q 3, (A3v+kilA3ks1n kv)

Then the rectangular coordinates are given by

l 1

15) X=(pz+c 2)2(cos O'cost-sin Q'cos I sin {)

0
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16)

17)

18)

19)

20)

21)

Then

22)

23)

24)

Y=

Z

Z

L

(02+c02)2(sin Q' cos § + cos Q' cos I sin V)

= pn

To find the velocity components, compute
r -2 z

aj (l-e )-J {o +Ao+B)

ol P +c 2,2

il

e . .
= psinv v
p

1
az'(l—qzsinZ\b)2

2 2h2
6 +cg M

3 2 -4 .
=0 aq 2 (B + 16 Mo N, cos 24)

2 U ) 4 .
- c a3(é0> (A3+k§lkA3kcos kv)v

L d l.-.
—§££~§—‘X—Yé'+(p2+c02)2(—sianosQ'—cos I coswsinQ')i

8] +CO

L) —1-—

—aﬁﬁ*i'Y+Xﬁ'+(p2+c02)2(—sinw sinQ'+cos I cos ¥ cos Q')@
p +cC
0

= mp+1,0 cos ¥ o
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Appendix II

Algorithm for Satellite Position Vector and Velocity,
if the Potential V = —u(p+n5)(02+c2n2)~1(J3#0)

Given U,re,J21J3:a;eaS:61182163
Compute once for each orbit

2 2 1 A 2 2 _ 2
o =Te Jpr 0= 3 e J, ¢'=cy -6, pma(l-e’)
2 2 ' 2
-2ac? (ap-c8) (1-8)+ %—9—— 52 {1+ £ (3s—2)}s(1—s)
A =
2
(ap—cz)(ap—c28)+4a2c28+ é—g—é-62(3ap—4}:a2—c2)S(l—S)
P
1
B = c2+(2a)~l(ap-—cz)A, b= - %— A, aj=a+b,, b2=32
1
p0=aal(B+ap—2Aa—c2), 02=(HPO) . u from
2 2
126 c
22) (1-s)l1- s) 1
-1 c? \po) 39Po 2 -1,2
u =1+ — (1-8)+ 5 ’ Cz= -—-u,03=ia2(1—su )
"ofo [1+ —S— (1-25))2 “0%0
+ agPg + for direct orbit
- for retrograde
2 2 2
c -1 26 c c -1 &
c, = (1- su) == u(1l- u), P=(l1- —— Su) — u(l-8),
1 aPo 0 30Po 29Pg Po
With Rn(x)=ann(x—l), compute
1 1
2.2 n 2,2
A;=(l-e )pnzz(bz/p) P (b, /b )R, [ (1-e%)7]
1 . 1
_ 2,2 -1 n 2,2
A,=(1-e")"p ~ T (b,/p) P, (b, /b )R [ (1-e7)7]

n=0
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1 1
2,2 -3 2 2.2
A,=(l-e)"p ° % D, m+2[(l e ) ], where
m=0
i . .
_ i-n 2i-2n 2n
D21 - i()(—l) (c/p) (bz/p) P2n (bl/bz)
i \ .
= 5 (_yyi-n 2i-2n 2n+1
1 , 1
_ 3 —a2y2 -3 2 4 - ~§ _ 2 4 2
All— a (1-e")"p “e( 2blb2 p+b2 ) Alz— 35 (l e )

1
1 2
2,2 -1 -1 2 2, =2 9 2 e 3
By1= (1-e7)"p “elbyp "+ (3b) “-b,%)p "~ 3 byb,"(1+ & )p- %+ 822 *(a+3¢%) 5]

1
2 ~l:e

2 2, -2 9 2 2 -3
A22""(1~'e ) p

2
, 2 9 3, 4,2 4 -4
8 (3bl b2 )p g © blb2 p T+ 32 b2 (6e“+e " )p ]

1 1

el 3 ool
.22 -1ed 2.3 4 -4 _ 3 272 -5 44
Ap3=(1=e7)"p T g (Byby P by )L Ay.= 3ip (1-e®)%p b

1
2,2 -3 -1 3 2, -2.1 2 2 2.4
A3l=(l—e ) p e[2+blp (3+ Ie )-p (5 by"+c%) (44367 !

1
= 2 4

2.2 -3;e 3 =1 2 -2 e 3 2,,1. 2 2
A32—(l—e )7 p [Z-+ i blp e " -p (4 + 5 e )(2b2 +c“)]

1 1
2,2-3 3-1 . -1 1 = 2 27,

_ 4
Ay3=(1-e”)p e 73b,p -3 (2 b, +c

1 2.2 -5
Ayg= - 33 (1-e7)%p 7 (3b,%4c?)e
Q = (P2+S)1/2
=1- l-c P+( C 2+ l-c )( Q )+ 2_ C, Q +O(J
B, 2 8 ~1 2 64

1 2.2 3
B1 =3 Q+P 2 C PQ 4= 4(4c +3cl )Q 158 G5 Q +0(J
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_ 1, 3 .2 3 2 1.2 3
B3— 5C5- 8 < g C» (1+ 5 Q )+0(J2 ),
2 3 4
- - 3 3 - Q.1 4 = o & -~ 2
By1= "2P0+ § C1Q7, Byy= -(g + 5 Cx07), Byg= -C; 57, By ,=C, &7
- e 9 3,1 I § 2, .2 2,4
B, = ~C,PQ+ 7 C;C,0°+ 5 C;Q, B,,= 32[(4cz+3cl )Q“+3¢,7Q"]
I 3 _ 3 .24 _ -1 -1
By3® 7 16 C1C2Q ¢ Byp= 355 € Q4 r=2(1-C,S) Tup,
1
2 -1 u \? -1 T2 1 1
- [l — ' — - 1y
ao'—aO+Al+c A2B1 B2 . 2nvl— ag (a0 ) T, 2nv2—a2u A2B2 (a0 ) T,
e' =a e a.t
0
_-]2; ——:L
a2, =1, -1 _ -1 -1, _f(u 2 -1
xl_al c Bzaz Bl B2 . X2—61+82a2 (a0+Al)A2, XB— (ao a,u AZBZ
i 1 \; L
_.-1 2 -1 fu\° 212 o 2_-1
x4—ao (Al+c A2Bl B2 ), XS—‘ ag ‘c a, u, X6— a, a,u 32 ,
1 13 1 1
H,=2 2[ 148+ (1-8) (1-r25%)?] H,= %'Q[(l—ré)z—(l+r6)2],
1 1
2
Hy= 3 [ (14P) (1-26) 2+ (1-P) (14r )
Compute for each point
1) MS=2nvl(t+kl), ¢S=2nv2(t+kz)
R e =
2) Solve for Ey: MS+E0 e 31n(Ms+EO) Ms
3) To find v,: Place E=M_+E, in the anomaly connections
4) wO=X3vo
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—l
(0] i?
- '}_

= Y- ]‘.__l'_i'_ -
6) Then Ey [1-e cos(Ms+Eo), M e [1 e'cos(MS+EO)]

5) Compute M, = -X4VO_J sin(2y TZwO)

3. 2 .
Ml 51n(Ms+EO)

7) Place E=M5+EO+’:'l in the anomaly connections and solve for v=MS+v +v

0 1
2 ¥
T, . _ -1 . . _ _l
8) Then Vl—X6[A2vl+ ?lA2k51n(kMs+kvO)] B, B, cos (¥ _+i,)-B, B, "~
sin(2y +2w0)
-1 2
9) Compute Mo=- {Al 1 kLlAlk31n(kMs+kvO)+k5{Bl'wl+Bllcos(ws+wO)

. ) , . ,
+2B12wlcos(2ws+2wo)+B13cos(3¢s+3wo)+Bl451n(4¢s+4wo)}]

10) Then E —[l—e cos(M +E, )] l

11) Place E:MS+EO+E1+E2 in the anomaly connections to find

vEm_+V A +V, +V
s 1

0 2

+A. .V cos(M +v )+2A

21V1 v

12) Then Wz—k [A2 5 52 lcos(2MS+2vO)

. . -1 . .
+A23s:Ln(3MS+3v0)+A24s:Ln(4MS+4VO)]—-B2 [—B21W151n(ws+wo)
1 4 B y
+2322wlcos(2¢s+2uo)+823cos(3¢s+3wo)+B2451n(4ws+4¢0)]
Then E=M_+E,+E) +E,, V=M_+v+v,+v,, m=ms+mo+wl+wz )
13) p=a(l-cos E)=(l+e cos v)—lp. N=P+Q sin { .
- ;L l
14) B —c E;-Z( v+ ; A., sin kv)+a a—lﬂi(B y- §C C.Qcosy
%la,/) 3V, I Pk 3% 3'7 4172
_3

t 33 C22Q2sin 24)
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Then if sgn ay= +1 for direct or retrograde orbits respectively,

the rectangular coordinates are

1 1
15) X=(02+c2)2[chos Q'cosW—Hil(l-S)zsgna3(H2+H
1 1
2 2.2 . -1 2 .
- L -
16) vY=(p“+c7) [H151nﬂ'cosu+Hl (1-8) slna3(H2+H3
17) 2Z=pmn-5
Velocity Components
1 1
. a l-e2 2 (p2+Ap+B)2
18) v= 73 2 2 2
0 P+ N
19) 5= g‘ozsinv v
z 1
. MPq 2 2271 2,2
20) bV =\—5 ] (PT+c"m7) (1+Cyn-Cym )
1
® 2 _H_ 2 4 s
21) O'= -c ast s (A3+ % kA3kcos kv)v
0 k=1
1

-1

3

sinV)sin Q']

sin¥)cos0']

2 3 . 3 .22 .
+a3a2 u (B3+ 2 clczQ siny+ C2 0%cos 2¥) ¢

le6

1

1

22) <= 2°°2 x~Y§'+(p2+c2)2[—HlsinwcosQ'—Hil(l—s)zsgna3

p +c

1

.

1

H3cos¢sin0']@

23) Y ) Y+Xﬁ'+(p2+c2)2[-Hlsinwsinﬂ'+H11(l—S)ngna3H3cosmcosQ']w

p +cC

24) np + pQcos¥ @
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